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Numerical computation of resonance poles in scattering theory
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We present a possible way of computing resonance poles and modes in scattering theory. Numerical ex-
amples are given for the scattering of electromagnetic waves by finite-size photonic crystals.
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Resonance poles are the main quantity of interest in s
tering theory@1,2#. They are poles of the scattering matri
and may be considered as generalized eigenvalues to w
generalized eigenmodes are associated. These poles are
plex ones, i.e., they correspond to complex values of
energy in the scattering theory of the Schro¨dinger equation
and to complex frequencies for the scattering theory of
Maxwell system. The point of this note is to suggest a p
sible way for computing the resonance poles and the ass
ated residues. We must note that there is a rich litera
concerning the computations of the poles and zeros of a
lytic functions~see, for instance, the excellent book by Kr
vanja and Van Barel and references therein@3#!. The situa-
tion that we deal with is rather different because the poin
issue here is to compute the poles of a meromorphic ma
z→T(z)PMn(C) ~i.e., the vector space ofn3n matrices
with complex entries!, whose entries are not known explic
itly, consequently the methods developed for functions h
to be adapted.

When dealing for instance with finite-size photonic cry
tals, i.e., periodic arrangements of scatterers that are fini
at least one direction of space@4#, one cannot use the Bloc
waves theory to compute the electromagnetic propertie
the structure and one has to retreat to the computation o
scattering matrix, i.e., the operatorS(k) such that Ud

5S(k)Ui , whereUi is the incoming part of the field andUd

is the outgoing part of the field andk is the wave number
The scattering matrix writesS(k)5I d1T(k), whereT(k) is
the so-called scattering amplitude. Let us assume that t
exists some polekp of T in some neighborhoodV of the
complex plane, then locally the scattering amplitude wri
T(k)5Pp /k2kp1T0(k), wherePp is a residue operator an
T0 is holomorphic inV. The operatorPp is a finite rank
operator and its range, i.e., the vector space in whichPp
takes its values, is precisely the nullspace ofT21(kp) @i.e.,
the vector space over whichT21(kp) is null#. Mathemati-
cally speaking, we haveT21(kp)Pp[0. The operatorPp is
defined in an abstract way as the Cauchy integral:

Pp5
1

2ip R T~z!dz, ~1!

where integration takes place on a loop oriented in the di
sense enclosing the only polekp . Another way of defining
the projection operatorPp is to define it as the following
limit:
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Pp5s2 lim
k→kp

~k2kp!T~k!. ~2!

The point of this note is to show that the first abstra
definition ~1! can be turned into a useful numerical tool f
both the computation of the value of the pole and of t
residue operator, and hence the generalized eigenm
whereas the second is useless. From a numerical poin
view, we of course only deal with finite rank operators a
the scattering amplitude admits a representation as an op
tor on l 2(Z), i.e., as a matrix, in the usual meaning, acting
double complex sequences@5,6#. Once this representation i
given, the residue operator can be computed, provided th
region of the complex plane containing only one pole can
isolated. This means that it suffices to know the value of
pole with a very poor precision to be able to compute
residue operator, which is not the case when the second
nition ~2! is used; in that last case, numerical instabiliti
necessarily occur as it uses the product of a singular ma
by a term tending to zero, which is a very bad numeri
situation. From a practical point of view, one has to defin
path g:tP@0,1#→g(t)PC whose graph is a loop enclosin
kp and to compute numerically the matrix integr
*0

1T@g(t)#g8(t)dt for which any reasonable numerica
method works. However, a precise computation of the pol
useful when one wishes to compute a map of the electrom
netic field of the pole, for in that case a particular basis su
as Hankel-Fourier series are used, i.e., the field is expan
on the basis@Hn

(1)(kpr )exp(inu)#nPZ @5,6#. A possible way is
to use a Mu¨ller-like algorithm @7# and to compute a zero o
the determinant ofT21(k). Unfortunately, this matrix is gen
erally badly conditioned and a better idea is to compute
smallest eigenvalue ofT21(k). However, such an algorithm
is not designed to localize the pole, i.e., it is necessary
have a good first guess of the pole for the algorithm to w
properly. In order to find a first approximation, we sugge
computing the following Cauchy integral:

1

2ip R zT~z!dz5kpPp . ~3!

Recalling thatPp has finite rank and hence has only a fin
number of eigenvalues, a simple comparison of this last
tegral withPp gives the value ofkp with a very good accu-
racy, this last value can then be used in a Mu¨ller or Newton-
like algorithm to refine the value@8#. Of course formula~3!
only holds whenkp is a pole with multiplicity 1; this case is
a very common one~see Ref.@11# for practical applications!.
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One should not mistake the range ofPp with the multi-
plicity of kp ; it is possible that the multiplicity ofkp is one
while the rank ofPp is greater than one@9#.

The general case of a pole with multiplicity higher th
one occurs when the residue associated with polekp cannot
be put in diagonal form; this situation can be remedied
adding an infinitesimally small perturbation toPp , which
allows us to split the degenerated levels. The method wo
work for poles of multiplicity greater than one@3,10# in case
of a meromorphic function; it does not work here because
deal with meromorphic matrices.

Let us now turn to some numerical applications. We d
with the structure depicted in Fig. 1. It is a collection

FIG. 1. Sketch of the two-dimensional photonic crystal. T
transmission ratio is computed as the flux of the Poynting ve
through the segment indicated below the crystal.

FIG. 2. Transmission ratio vs the dimensionless wave num
for an incident plane wave.
04770
y

ld

e

l

737 homogeneous fibers with relative permittivity«59,
the radius of the rodsR51/4, and the spacing isd51 ~these
values are given in arbitrary units!. We use a rigorous moda
theory of diffraction to compute the scattering matrix of th
system@5,6#. All the numerical results have been obtain
using a standard PC. Removing a rod at the center of
crystal, a defect mode appears in the gap@11# ~see Fig. 2 for
the transmission spectrum!. A pole kp corresponds to this
peak in the transmission spectrum. The reference value
we use for convergence comparison iskp
52.329 197 035 861 34–0.003 782 679 876 14i . This value
has been computed using the Mu¨ller algorithm by minimiz-
ing the smallest eigenvalue ofT21. For this given value of
kp , the smallest eigenvalue has modulus inferior to 10214.
We then compute both Cauchy integrals~1,3!. The integra-
tion path is a triangle whose vertices have affixes~2.3,
2.420.1i, 2.4!. We use the integration algorithm described
Ref. @12# and we denote bykN,p the numerical value ob-
tained by using N points of integration, which we

r
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FIG. 3. Convergence of the value of the pole vs the numbe
integration points.

FIG. 4. Convergence of the eigenvalue of the projection ope
tor vs the number of integration points.
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compare with the above valuekp , which is the best numeri
cal value that we can obtain. A very good precision is rapi
obtained~see Fig. 3!; for instance, using a discretization o
15 points, we obtain 6 exact figures, though with such
rough discretization we only get an operatorPp with a low
precision. In fact, it seems that the proportional coeffici
between both integrals is not very affected by the precis
with which Pp is computed. A finer computation of integra
~1! gives the defect mode. The convergence can be che
by looking at the nonzero eigenvalue ofPp ~Fig. 4!, here the
reference eigenvalue~i.e., the best numerical value for a pr
l
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cision error of 10215) is obtained withN5150. A much finer
discretization than in the case of the pole is required to g
good representation of the defect mode, though the com
ing time is perfectly accessible with a very basic PC.

In conclusion, we have shown that it was possible to tu
a rather abstract mathematical object into a useful numer
tool. This technique applies as well for any situation
which a meromorphic operator with nonessential poles
involved, which is the usual case. It can serve as an in
step for a Newton or Mu¨ller algorithm because it allows a
very good localization of a pole.
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