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Numerical computation of resonance poles in scattering theory
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We present a possible way of computing resonance poles and modes in scattering theory. Numerical ex-
amples are given for the scattering of electromagnetic waves by finite-size photonic crystals.
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Resonance poles are the main quantity of interest in scat- P,=s— lim (k—k,)T(k). )
X ; ; p p
tering theory[1,2]. They are poles of the scattering matrix, k—kp

and may be considered as generalized eigenvalues to which
generalized eigenmodes are associated. These poles are com

plex ones, i.e., they correspond to complex values of the ~ " ° computation of the value of the pole and of the

energy in the scattering t_heory of the Saihr_tger equation residue operator, and hence the generalized eigenmode,
and to complex frequenc_:les for _the scattering theory of th‘i’/\/hereas the second is useless. From a numerical point of
Maxwell system. The point of this note is to suggest a pos:

ibl ¢ tina th | d th view, we of course only deal with finite rank operators and
sible-way for computing the resonance poies and th€ assogyq scattering amplitude admits a representation as an opera-
ated residues. We must note that there is a rich literatu

. . "or onl?(Z), i.e., as a matrix, in the usual meaning, acting on
concerning the computations of the poles and zeros of aNYouble complex sequencgs,6]. Once this representation is
Iytlc. functions(see, for instance, the excellent book l_Jy Kra- given, the residue operator can be computed, provided that a
vanja and van Bar_el and refere.nces theqéip. The situa- egion of the complex plane containing only one pole can be
tion that we deal with is rather different because the_pomt "’.‘[solated. This means that it suffices to know the value of the
issue here is to cc_Jmpute the poles of a meromorphl_c matrlf)ole with a very poor precision to be able to compute the
z—T(2)eMq(C) (i.e., the vector space aixn matrices residue operator, which is not the case when the second defi-
nition (2) is used; in that last case, numerical instabilities

with complex entries whose entries are not known explic-
itly, consequently the methods developed for functions hav?lecessarily occur as it uses the product of a singular matrix
by a term tending to zero, which is a very bad numerical

The point of this note is to show that the first abstract
finition (1) can be turned into a useful numerical tool for

to be adapted.

¢ IW_hen dez_illgg for instance ,:N'thf f|n|t;et-5|ze Ft)gotton'cf.cqs'.situation. From a practical point of view, one has to define a
als, i.e., periodic arrangements of scatterers that are finite 'Bath y:te[0,1]— (1) e C whose graph is a loop enclosing

o st one drecion of pabd] ane canl e e Boch i A o compute numercaly the matx teqa
Y b 9 prop T y(t)]y'(t)dt for which any reasonable numerical

the structure and one has to retreat to the computation of t : : :
method works. However, a precise computation of the pole is

scattering matrix, i.e., the operatd(k) such thatU¢Y !

_ i i . . . d useful when one wishes to compute a map of the electromag-

is ?r(llé) gu’t V\(l)?ﬁreuarl[sgp tehgu;ic:erlgng nggttﬁgtazcslifnr:ger netic field of the pole, for in that case a particular basis such
going part . " . as Hankel-Fourier series are used, i.e., the field is expanded

The scattering matrix writeS(k) =14+ T(k), whereT(k) is the basigH®(k.r)exp(n@)],., [5.6]. A possible way is

the so-called scattering amplitude. Let us assume that the%use a I\/'I'lljerTlike palgorﬁhm[;]eénd’ to- coFr)npute a ze?lo of

exists some polé, of T in some neighborhood of the dhe determinant of ~*(k). Unfortunately, this matrix is gen-

complex plane, then locally the scattering amplitude write erally badly conditioned and a better idea is to compute the
T(k)=P,/k—k,+ To(k), whereP, is a residue operator and ; - .
(k) =Py o To(K) P b smallest eigenvalue of (k). However, such an algorithm

Tg is holomorphic inV. The operatorP,, is a finite rank . . . T
0 b P P is not designed to localize the pole, i.e., it is necessary to

operator and its range, i.e., the vector space in wiitgh have a good first guess of the pole for the algorithm to work

takes its values, is precisely the nuIIspaceTGfl(kp) [i.e., roperly. In order to find a first approximation. we sugaest
the vector space over which™ (k) is null]. Mathemati- properly. N Irst approx ) lon, we sugg
P computing the following Cauchy integral:

cally speaking, we hav@fl(kp)PpEO. The operatoP,, is

defined in an abstract way as the Cauchy integral: 1

P % zT(z)dz=k,P,. (€)]

2

P T(z)dz, (1) Recalling thatP, has finite rank and hence has only a finite
number of eigenvalues, a simple comparison of this last in-
tegral withP,, gives the value ok, with a very good accu-

where integration takes place on a loop oriented in the direatacy, this last value can then be used in allstuor Newton-

sense enclosing the only pokg . Another way of defining like algorithm to refine the valug8]. Of course formulg3)

the projection operatoP,, is to define it as the following only holds wherk,, is a pole with multiplicity 1; this case is

limit: a very common onésee Ref[11] for practical applications

P i
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FIG. 3. Convergence of the value of the pole vs the number of
-4t 1 integration points.

S5 4 3 2 1 o 1 2 3 4 5 7x7 homogeneous fibers with relative permittivigy=9,

) ) ) the radius of the rodR= 1/4, and the spacing =1 (these
FIG. 1. Sketch of the two-dimensional photonic crystal. The q)es are given in arbitrary unjtdVe use a rigorous modal
transmission ratio is computed as the flux of the Poynting vectog, oy, of diffraction to compute the scattering matrix of this
through the segment indicated below the crystal. system[5,6]. All the numerical results have been obtained
) ] ] using a standard PC. Removing a rod at the center of the
_One should not mistake the range Rf with the multi-  cystal, a defect mode appears in the §f (see Fig. 2 for
plicity of ky; it is possible that the multiplicity ok, is one  the transmission spectrymA pole k, corresponds to this
while the rank ofP, is greater than ongd]. ~ peak in the transmission spectrum. The reference value that
The general case of a pole with multiplicity higher than\ye  yse  for convergence  comparison  isk
one occurs when the residue associated with ggleannot  _ 5 309197035861 34—0.003 782 679 876. 14 his value
be put in diagonal form; this situation can be remedied byhas peen computed using the Iu algorithm by minimiz-
adding an infinitesimally small perturbation ®,, which  ing the smallest eigenvalue @ L. For this given value of
allows us to split the degenerated levels. The method woulqp the smallest eigenvalue has modulus inferior to 40

work for poles of multiplicity greater than ori8,10] in case  \wye then compute both Cauchy integréls3). The integra-
of a meromorphic function; it does not work here because wg;gp, path is a triangle whose vertices have affix@s3,
deal with meromorphic matrices. 2.4—0.1i, 2.4). We use the integration algorithm described in

. Let us now turn to some qumgrical applications. We deaker. [12] and we denote by, the numerical value ob-
with the structure depicted in Fig. 1. It is a collection of {5ineq by using N points of integration, which we

10 T T T T T T T

Defect mode

T T T T
107 k|

3 9 P -P
10 l P N,pl

167 . N . . . ) ) ) ) R LR T R R SR A R LR LR AR AT IERRIRIE
12 14 16 1.8 2 22 2.4 26 2.8 3 32 10 15 20 25 30 35 40 45 50 55 60

kd N

FIG. 2. Transmission ratio vs the dimensionless wave number FIG. 4. Convergence of the eigenvalue of the projection opera-
for an incident plane wave. tor vs the number of integration points.
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compare with the above valug , which is the best numeri- cision error of 10 19) is obtained wititN=150. A much finer

cal value that we can obtain. A very good precision is rapidlydiscretization than in the case of the pole is required to get a
obtained(see Fig. 3, for instance, using a discretization of good representation of the defect mode, though the comput-
15 points, we obtain 6 exact figures, though with such &ang time is perfectly accessible with a very basic PC.

rough discretization we only get an operafy with a low In conclusion, we have shown that it was possible to turn
precision. In fact, it seems that the proportional coefficienta rather abstract mathematical object into a useful numerical
between both integrals is not very affected by the precisioriool. This technique applies as well for any situation in
with which P, is computed. A finer computation of integral which a meromorphic operator with nonessential poles is
(1) gives the defect mode. The convergence can be checkeanvolved, which is the usual case. It can serve as an initial
by looking at the nonzero eigenvalue®f (Fig. 4), here the  step for a Newton or Miter algorithm because it allows a
reference eigenvalug@e., the best numerical value for a pre- very good localization of a pole.
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